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Abstract. Surface EMG contains a lot of physiological information reflecting the intention of human move-
ment. Gesture recognition by surface EMG has been widely concerned in the field of human-computer inter-
action and rehabilitation. At present, most studies on gesture recognition based on surface EMG signal are
obtained by discrete separation method, ignoring continuous natural motion. A gesture recognition method of
surface EMG based on improved long short-term memory network is proposed. sEMG sensors are rationally
arranged according to physiological structure and muscle function. In this paper, the finger curvature is used
to describe the gesture state, and the gesture at every moment can be represented by the set of different fin-
ger curvature, so as to realize continuous gesture recognition. Finally, the proposed gesture recognition model
is tested on Ninapro (a large gesture recognition database). The results show that the proposed method can
effectively improve the representation mining ability of surface EMG signal, and provide reference for deep
learning modeling of human gesture recognition.
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1. Introduction

With the continuous development and popularization of human-computer interaction technology, gesture recogni-
tion 11, as a natural, intuitive and non-contact interaction method, has attracted more and more people’s attention
and attention [1,2]. In gesture recognition technology, gesture recognition based on surface EMG has high practi-
cability and wide application scenarios [3]. This technology can recognize the muscle activities of fingers, palms,
wrists and other parts of the human body through the acquisition and processing of surface electromyographic
signals, so as to realize the recognition and control of gestures. Compared with traditional gesture recognition
technologies based on vision or inertial sensors [4], gesture recognition technology based on surface EMG has
better robustness and stability, and can achieve efficient and accurate gesture recognition under different illumina-
tion and posture conditions. Continuous gesture recognition technology based on surface EMG has been widely
applied and promoted in the fields of smart home, smart medical treatment [5] and prosthetic limb control [6], and
has become one of the important research directions in the field of human-computer interaction [7,8].

However, most studies focus on the discrete classification of predefined gestures. For example, Nguyen et al.
[9] used one-dimensional CNN to classify gestures, and the average recognition rate of 18 gestures was 78.86%.
However, with the increase of gesture types and the mutation of signals when switching actions, the recognition
accuracy will decrease. In view of these shortcomings, continuous motion estimation based on surface EMG
can better improve the application scenarios in practice [10]. At present, continuous motion estimation based on
surface EMG signals can be divided into two categories: mapping based on physiological model and regression
model. Among them, Hill model is the most commonly used physiological model [11], which uses Hill contraction
mechanics, musculoskeletal geometry and joint forward dynamics to establish the mapping relationship between
EMG and joint Angle [12]. In the regression model approach, the mapping between the surface EMG signal and
the output creates redundancy. In response to these problems, more and more people use deep learning methods
to achieve continuous motion estimation [13]. The deep learning methods do not need complex physiological
knowledge as the background, and can extract the spatial correlation of surface EMG well. For example, Karatay et
al. [14] proposed a multi-output convolution to estimate 16 joints of a finger with an average correlation coefficient
(cc) of less than 0.8. However, as the degree of freedom increasing, the accuracy of finger motion estimation
decreased.

Aiming at finger curvature, the mapping relationship between surface EMG and finger curvature is established
by an improved LSTM model to realize continuous gesture recognition. The experimental results show that the
method is correct.
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2. Methods

The overall framework is shown in Figure 1. First, the corresponding surface EMG of the forearm is collected
while performing the task gesture set. After pretreatment, it is input into the improved STM model to obtain the
corresponding finger curvature, and finally the corresponding continuous gesture is obtained.

Fig. 1. Overall framework for continuous gesture recognition

2.1. Finger Curvature

Fingers play an almost decisive role in gestures, so the analysis of gestures can be transformed into the analy-
sis of finger states. The finger movement can be regarded as the movement of the metacarpophalangeal joints.
Metacarpophalangeal joint is the main control point of finger movement, and the interphalangeal joint bends and
extends around the metacarpophalangeal joint. It describes this linkage as finger curvature. Finger curvature Ci,
i = 1, 2, 3, 4, 5, representing the curvature of 5 fingers respectively.Ci ∈ [0, 1]. GestureG = [C1, C2, C3, C4, C5].
The gesture consists of the set of finger curvatures of each finger.

2.2. Improved LSTM

The improved LSTM model is designed in two parts. First, feature extraction is carried out on the input sEMG
data through the CNN layer, and a series of feature representations are obtained. These features are then passed to
the LSTM layer in chronological order [15-18]. LSTM links the output of the previous CNN layer with the input
of the current moment to form a coherent time series. This design makes LSTM better able to deal with time series
data processing tasks. Figure 2 shows the overall structure of improved LSTM model.

Fig. 2. Overall structure of improved LSTM model
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First, the surface EMG obtained is divided into several parts by sliding window method, and each signal is
rearranged into EMG x ∈ RL×C as the input of CNN. The size of the EMG input data is 20 × 5, where 20 rep-
resents the active window width of 200ms and 5 represents five EMG acquisition channels. In order to determine
the most suitable window length, experiments under different window lengths are carried out and comparative
analysis is carried out. The CNN layer consists of the two convolution layers, two pooling layers and two fully
connected layers. The first and second convolution layers contain 128 and 64 3 × 3 filters, respectively, using
ReLU as the activation function. The first and second pooling layers use 2 × 2 maximum pooling, respectively.
After the first pooling layer, a Dropout layer with parameter 0.5 is added to reduce the risk of over-fitting the mod-
el. Adding a Batch Normalization layer after each convolutional layer helps normalize the output of each layer,
improving the convergence speed and generalization performance of the model. The eigenvector of CNN output
is f = [f1, f2, · · · , fn].

LSTM [19] constitutes the lower layer of the proposed model. The eigenvector obtained from the CNN layer
is used as the input of the layer, and the finger curvature is predicted by the LSTM layer. The basic unit of LSTM
network consists of memory gate, input gate and output gate [20]. With forget and input gates, LSTM structures
can more effectively determine what information should be forgotten and what should be retained. The update of
the LSTM unit at time step t can be described as:

ft = σ(Wf · [ht−1 · xt] + bf ). (1)

it = σ(Wi · [ht−1 · xt] + bi). (2)

c̃t = tanh(Wc · [ht−1 · xt] + bc). (3)

ct = ft · ct−1 + it · c̃t. (4)

ot = σ(Wo · [ht−1 · xt] + bo). (5)

ht = ot · tanh(ct). (6)

Where ft represents the forgetting gate, it is the input gate, ot is the output gate, ct is the storage unit, σ is the
sigmoid function, and b is the corresponding bias vector. The LSTM network has two LSTM layers and one fully
connected layer. The number of LSTM layer is 128.

3. Experimental Results and Analysis

3.1. Parameter Setting

All gesture recognition models in the experiment are implemented based on Python language, built by Tensor-
Flow2.3 library, trained and tested on Intel i7-10750H processor and NVIDIA RTX2070 graphics card. The total
training rounds of the gesture recognition model are set to 40, the training batch is set to 64, Adam is selected as
the optimizer of the experimental training, the cross entropy loss function (Softmax) is set as the loss function,
and the activation function is set as ReLU by default. The initial learning rate of the training stage is 0.0001, and
the learning rate drops to half of the original every 10 rounds. In order to ensure the reliability of the experiment,
the same hyperparameters are set on the comparison models, and the recognition models are trained three times to
obtain the optimal recognition model.

3.2. Results and Discussion

The total number of samples obtained in this paper is 183560, including 52 kinds of actions, and the number of
samples of each gesture is 3530. In the experiment, the sample data of electromyography after sliding sampling
are divided into training set and test set according to 7:3. In this paper, the sliding window size is set to 200ms,
which can achieve the best accuracy. At the same time, considering the network computing cost and the real-time
consideration that the sample window length should be less than 300ms. In addition, five comprehensive evaluation
indexes are used to evaluate the classification effect of each model: accuracy rate (Acc), precision (Pre), recall rate
(Rec), F1-Score (F1) and ROC curve, respectively [21,22].
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Where Prei is the accuracy rate of each type of sample, and Reci is the recall rate of each type of sample.
Sample type n is 52.

The evaluation of the model mainly includes two aspects. The first objective is to verify the validity of CNN-
Net by selecting the module with the optimal receptive field parameters through detailed ablation experiments,
and to verify that the channel attention mechanism can enhance the model accuracy. Secondly, the multi-scale
feature fusion network structure proposed in this paper is compared with the traditional feature pyramid network
structure to check the contribution of the proposed model components to the model recognition performance.

A. CNN-Net module evaluation
The evaluation of CNN-Net module consists of two parts: one is to test the validity of the spatio-temporal

feature extraction module; the other is to explore the influence of different receptive field parameters in the branch
of spatial feature extraction on gesture recognition. This section designs the following experiment. Under the re-
moved attention mechanism based on the NinaproDB5 dataset, it explores the performance of S-Net module (only
multi-channel CNN feature extraction branch), T-Net module (only bidirectional LSTM feature extraction branch)
and ST-Net module (combination of multi-channel CNN and bidirectional LSTM). In addition, convolution ker-
nels of different sizes are set on the network module, and the parameters of convolution kernels with the best
performance of the model are selected. Specific steps of the experiment: (1) The original data are converted into
EMG sample data by the pretreatment method; (2) As in previous works [23,24], the EMG samples are divided
into training sets and test sets as 7:3; (3) Design a gesture recognition model for ablation experiment, which is
specifically one-layer feature extraction module (such as S-Net, T-Net and ST-Net feature extraction models, that
is, based on STA-Net module, CNN branch or LSTM branch is deleted) series decoding module; (4) The size pa-
rameters of convolutional kernel in T-Net and ST-Net are set to [3,5,7], [3,7,11] and [3,11,15] respectively, while
there is no convolutional branch in S-Net. (5) The same training set is used to train the above 7 models for 40
rounds, and the test set is used to evaluate the classification effect of the models in various aspects.

The experimental results are shown in Table 1. ST-Net module has the best performance and the highest recog-
nition accuracy reaches 86.91%. The performance of T-Net is significantly better than that of S-Net, which verifies
that LSTM network is more able to extract strong discriminant features (that is, time-dependent relationships)
from sEMG signals, and when T-Net is integrated into the time-feature extraction branch, it can be found that
the recognition accuracy of ST-Net is significantly improved. According to the analysis of different convolution
kernel parameters, S-Net with large convolution kernel is superior to S-Net with small convolution kernel in four
comprehensive evaluation indexes, but ST-Net has the highest accuracy when the convolution kernel parameters
are [3,7,11]. Meanwhile, the convolution kernel parameters of STA-Net are determined in subsequent experiments
based on Pre, Rec, F1 and network computing costs are [3,7,11].

Table 1. Gesture recognition accuracy rate, precision rate, recall rate and F1 with different convolutional kernel
sizes

Methods kernel Acc/% Pre/% Rec/% F1

T-Net none 86.41 92.22 81.11 86.31
S-Net [3,5,7] 83.07 90.32 76.53 82.85
S-Net [3,7,11] 84.04 90.74 78.32 84.07
S-Net [3,11,15] 84.96 91.39 79.66 85.12
ST-Net [3,5,7] 86.70 92.82 81.19 86.62
ST-Net [3,7,11] 86.91 92.61 81.42 86.65
ST-Net [3,11,15] 86.83 92.13 81.73 86.62
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On the basis of determining ST-Net with convolution kernel parameter [3,7,11] as the optimal model, this paper
will explore the role of channel attention mechanism, that is, comparative analysis of ROC curve performance.
The experimental steps are the same as above, but the channel attention module is added to the gesture recognition
model, and the convolution kernel parameters are fixed as [3,7,11]. The experimental results are shown in Figure
3. The AUC values of ST-Net and STA-Net (STA-Net is 0.9921, ST-Net=0.9923) are not significantly different.
Therefore, this paper chooses to compare and analyze the Loss and Acc curves of the two models to further verify
the role of the channel attention mechanism module. As shown in Figure 4, although the Loss curve of STA-Net
oscillates significantly at the initial stage of training, the amplitude of oscillation is significantly smaller than that
of ST-Net when it reaches a stable state. By observing the Loss curve, it can be found that both models converge
at about 26 turns, and the Loss is lower when STA-Net converges. In addition, the Acc curve of STA-Net still
oscillates when Loss converges, but the Acc value of STA-Net is significantly higher than that of ST-Net, which
verifies that the channel attention mechanism can effectively enhance the model’s recognition accuracy of gestures.

Fig. 3. ROC curve of attention ablation experiment

Fig. 4. Loss and Acc curves of attention ablation experiment

B. LSTM-Net model evaluation
On the basis of the above, the evaluation of LSTM-Net model includes two parts: one is to test the effectiveness

of multi-scale feature fusion structure; the other is to compare the accuracy of LSTM-Net and advanced gesture
recognition models. The following experiments are designed in this section to explore the influence of three kinds
of feature pyramid networks on the multi-scale fusion of space-time features, which are STA-Net+FPN, STA-
Net+BiFPN and LSTM-Net.

The structure of the LSTM-Net+FPN model is based on the LSTM-Net model, and the feedback loop branch
is deleted (that is, 4-layer LSTM-Net module in series+FPN module+decoding module, in which the FPN feature
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fusion module performs top-down weighted operations on multi-scale spatio-temporal features). Similarly, the
LSTM-Net+BiFPN model replaces the feature fusion module FPN in LSTM-Net+FPN with BiFPN (that is, the
4-layer LSTM-Net module in series+BiFPN module+decoding module). In this model, the BiFPN feature fusion
module carries out bidirectional weighted operations on multi-scale spatio-temporal features to improve feature
fusion efficiency).

Similar to the gesture model based on sEMG signal proposed in this paper, some existing research results have
also achieved accurate recognition of gesture movements. Here, the performance comparison between the pro-
posed space-time deep neural network model and some advanced models is shown in Table 2. Comparison meth-
ods include CNN+Attention+IMU [25], CNN+LSTM [26], MV-CNN [27], Compact CNN[28], CNN+transfer
learning(CNN+TL) [29], and CNN+CviT [30]. Although the above methods have achieved good results, the mod-
el proposed in this paper can provide more accurate identification results than the mainstream methods.

Table 2. Comparison with different models

Method Window size/ms Acc/%

LSTM-Net 200 88.5
CNN+Attention+IMU 260 87.1
CNN+LSTM 260 84.57
MV-CNN 200 75.9
Compact CNN 200 70.1
CNN+TL 260 69.08
CNN+CviT 200 76.93

4. Conclusion

In this paper, an improved gesture recognition method based on LSTM network is proposed, which includes CNN-
Net to extract spatiotemporal features, attention module to enhance features and multi-scale fusion method based
on spatiotemporal features. In each STA-Net module of the network model, multi-channel CNN with different con-
volution kernel sizes are used to obtain spatial features of different receptor fields, and the time features extracted
by bidirectional LSTM are combined to obtain more discriminative spatiotemporal features. Finally, channel at-
tention mechanism and residual structure are added between CNN and LSTM to enhance the characterization
ability of features. In particular, a multi-scale combination method is designed to fuse multilevel information of
spatio-temporal characteristics. Based on the feature pyramid structure, both resolution and semantic informa-
tion are taken into account, and the spatial and temporal feature attention module and feedback loop branch are
constructed to act as the bridge of spatial and temporal features during iterative updating, which strengthens the
complementarity of features. The CNN-Net module, multi-scale fusion structure and decoding module constitute
the proposed gesture recognition model LSTM-Net, which reaches the most advanced classification level on the
large dataset Ninapro.

Future work focuses on reducing the number of sEMG sensors without degrading model performance, and
the information contained in the signal is lost as the number of sEMG sensors decreases. Therefore, accurate
recognition of gestures with fewer sEMG sensors remains a challenge. In addition, the robustness of the model
is also a difficult problem. It is considered to change the data set from the division between different repetitive
actions to the division between different subjects, and it is possible to introduce generative adversarial networks
to further enhance the data in future work.
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