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Abstract. The traditional Chinese-English translation model tends to translate some source words repeatedly,
while mistakenly ignoring some words. Therefore, we propose a novel English-Chinese neural machine trans-
lation based on self-organizing mapping neural network and deep feature matching. In this model, word vector,
two-way LSTM, 2D neural network and other deep learning models are used to extract the semantic matching
features of question-answer pairs. Self-organizing mapping (SOM) is used to classify and identify the sentence
feature. The attention mechanism-based neural machine translation model is taken as the baseline system. The
experimental results show that this framework significantly improves the adequacy of English-Chinese ma-
chine translation and achieves better results than the traditional attention mechanism-based English-Chinese
machine translation model.

Keywords: Chinese-English translation model, Self-organizing mapping neural network, Deep feature match-
ing, Deep learning.

1. Introduction

Since Cho et al. [10] proposed neural machine translation based on encoder-decoder architecture in 2014, this
framework had achieved rapid development in the field of machine translation, and had achieved significant im-
provement in translation quality compared with statistical machine translation. The encoder and decoder are both
Recurrent neural networks (RNN). The encoder RNN encodes the input source language sentence into a vector
representation with fixed dimension, and the decoder RNN decodes the representation into the target language
sentence. The conditional probability of the input sentence is maximized through joint training of the encoder and
decoder [2,3]. On this basis, Zhang et al. [4] proposed a method to add attention mechanism to the end-to-end
machine translation model, which effectively improved the quality of neural machine translation. Liang et al. [5]
studied two simple and effective attention mechanisms, one focusing on all source words all the time and the
other focusing on only a subset of source words. The validity of global attention and local attention in English-
German translation is proved respectively. In order to alleviate the problems of gradient disappearance and Long
distance dependence in machine translation, the researchers proposed a machine translation system based on the
sentence-level Long Short Time Memory (LSTM) model [6]. Although the traditional end-to-end neural machine
translation framework has achieved remarkable results, there is still a major disadvantage, which is that the frame-
work tends to translate some source words repeatedly, while mistakenly ignoring some words. This leads to the
serious phenomenon of over-translation and missing translation. This is because the traditional encoder-decoder
architecture does not have a mechanism to ensure that the information at the source end is fully translated to the
target end.

In response to the above problems, Sung et al. [7] proposed a neural machine translation coverage model in
2019, which effectively alleviated the phenomenon of overtranslation and missing translation in neural machine
translation with attention mechanism. The principle of this method was to combine the coverage vector and the
attention vector in the neural machine translation model based on the attention mechanism. That is, in the process
of decoding, the decoder reduced the ”attention” of those words that had been translated from the source language,
which reduced the possibility of it being translated again. The immediate solution was to combine the coverage
vector with attention, so that the coverage vector could regulate attention and thus play the role of ”correcting”
attention. However, this method can only be implemented on neural machine translation models with attention
mechanism, and is not applicable to all end-to-end neural machine translation models. Therefore, Qing et al. [8]
proposed a method to add a reconfigurator on the basis of the traditional encoder-decoder framework. The aim was
to ensure that the information from the source side was fully converted to the target side by adding a mechanism
to the traditional encoder-decoder framework, which was applicable to all encoder decoder frameworks. The
experimental results showed that the adequacy of translation was closely related to the reconstruction apparatus.
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In this paper, an encoder-decoder reconstruction framework for E-C neural machine translation is proposed,
and the distributed representation of word vectors is used to convert all data sets used in the experiment into
vector form. The traditional encoder-decoder framework with attention mechanism is used as the baseline system.
The experimental results show that this method can effectively alleviate the phenomenon of overtranslation and
missing translation in E-C neural machine translation.

2. Text Preprocessing

In the process of text preprocessing, the suspended word is first removed and all letters are changed to lower case,
and then each sentence is analyzed to obtain the syntax tree of all sentences. We use the NLTK[3] toolkit for text
segmentation and the Stanford PCFG grammar parser for syntactic parsing.

2.1. Traditional Natural Language Features

For the answer selection task, we first use some traditional natural language processing models for lexical analysis
and syntactic analysis, and extract the features about word and sentence structure [9-14].

A. Tf-idf cosine similarity
Tf-idf (term frequence-inverse document frequency) [15] is a commonly used word weighting technique,

which can evaluate the importance of words in a corpus and is widely used in information retrieval systems.
Tf-idf weighting technology is mainly considered from two aspects: term frequency (tf) and inverse document
frequency (idf).

Word frequency is defined as the number of times a word w appears in document D, as shown in equation (1).

tfi,j =
ni,j∑
k ni,j

. (1)

Where tfi,j represents the word frequency value of the word wi in document dj . The numerator ni,j is the
number of times the wordwi appears in document dj . The denominator represents the total number of occurrences
of all words in document dj , and is primarily used for normalization to prevent word frequency values from being
biased toward longer documents.

Whereas word frequency is used to measure the importance of words in a single document, inverse document
frequency is used to measure the prevalence of words in multiple documents. If a word appears in too many
documents, it is more common and less important, as shown in equation (2).

idfi = log
|D|

|dj : wi ∈ dj |+ 1
. (2)

Where the numerator |D| is the number of all documents in the document library, and the denominator
|dj : wi ∈ dj | is the number of all documents containing the word wi. The denominator is added by 1 to pre-
vent the divisor from being 0.

It can be seen that the importance of a word in a document is directly proportional to the word frequency and
the inverse document frequency respectively. Therefore, the Tf − idf weight of the word wi in document dj can
be defined as:

tfidfi,j = tfi,j × idfi. (3)

We treat each text as a document dj , and all text collections as document collections D. The Tf-idf model is
used to calculate the Tf-idf weight for each word in the text. Therefore, each text pair (q, a) can be represented
by a One-Hot weight vector (vq, va). By calculating the cosine cos(vq, va) between the two vectors, the similarity
between the text pairs about the coverage of important words can be obtained, which reflects the similarity between
the texts to a certain extent.

B. Longest common subsequence
If a sequence S is a subsequence of two sequences (q, a) and is the longest of all sequences that meet the con-

ditions, S is called the longest common subsequence (LCS) of q and a [16,17]. The longest common subsequence
is often used to measure the similarity between two strings. In this paper, the longest common subsequence is
applied to measure the lexical similarity between two text sequences, that is, a sentence is regarded as a sequence
whose elements are all the words in each sentence. The longest common subsequence can be solved using dynamic
programming (DP) methods.
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In order to avoid bias of LCS values towards longer texts, the model in this paper also uses the maximum
length of the two texts after calculating the LCS of the two texts. The final LCS similarity is shown in equation
(4).

LCSscore(q, a) =
LCS(q, a)

max(|q| · |a|)
. (4)

2.2. Deep Matching Feature

Traditional natural language processing models mainly model the similarity relationship between texts from the
perspective of word and sentence structure, and cannot fully consider the semantic connection between two sen-
tences. Therefore, in addition to the above traditional models, we also use word vector technology and depth
matching model to model the semantic connections between text pairs and extract the semantic features between
sentences [18,19].

A. Word vector cosine similarity
Word emdedding can map each word as a vector in a continuous space, and the semantic similarity between

words can be represented by the cosine similarity between word vectors. In this paper, Word2Vec [20] developed
by Google was trained on the Qatar Living dataset to obtain the word vector of each word, and the vector dimension
was set to 200.

After each word vector is obtained, the next step is to use the word vector to calculate the similarity between
sentences. Here, this study first adopts a simple Bag of Word model to get the vector representation of each
sentence, that is, to calculate the average value of each word vector in the sentence, as shown in equation (5).

s =
1

|s|

|s|∑
i−1

si. (5)

Where s is the vector representation of the sentence. si is the vector representation of each word in the sentence.
After the similarity of each sentence is calculated, the cosine similarity can be used to measure the semantic
similarity between two sentences. For each text pair (q, a), the calculation method of the cosine similarity of the
word vector is shown in equation (6).

embscore(q, a) =
qemb · aemb
|qemb| × |aemb|

. (6)

This method is simple and effective, with high computational efficiency, but it can not deal with challenges
such as the structure of phrase matching and the hierarchy of text matching. Therefore, we also use two-way
LSTM model and 2D neural network model to model text matching.

B. Encoder-decoder architecture
Since the encoder-decoder architecture was proposed, it has been widely concerned by researchers and has

become the basic model of neural machine translation [21]. Its structure is shown in Figure 1.
This article uses a bidirectional LSTM as an encoder and an unidirectional LSTM as a decoder. In this model,

the encoder reads the input sentence x = (x1, x2, · · · , xn) and encodes it as a vector with fixed dimension. First,
the forward LSTM encodes the input language as the forward hidden layer state −→h i, and then the reverse LSTM
encodes the input language as the backward hidden layer state ←−h i. Then the overall hidden layer state hi is
obtained by connecting −→h i and ←−h i. Finally, the hidden state of the input sequence is transformed into context
vector c by nonlinear transformation q.

Among them, the calculation of the forward hidden layer state −→h i is shown in equation (7), and the backward
hidden layer state←−h i and context vector c are obtained in the same way:

−→
h i = f(xi, hi−1). (7)

c = q(h1, h2, · · · , hn). (8)

Where f and q are nonlinear functions.
Given the context vector c and the first i− 1 already generated word y1, y2, · · · , yi−1, the decoder is trained to

predict the next word yi. The probability formula of generating word yi is expressed as:

p(y) =

n∏
i=1

p(yi, y2, · · · , yi−1, c). (9)
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Fig. 1. One kernel

p(yi, y2, · · · , yi−1, c) = g(yi−1, Si, c). (10)

Where si represents the hidden layer state at the moment of decoder i, expressed as:

si = f(si−1, yi−1, c). (11)

3. SOM Feature Selection

SOM is an unsupervised, self-learning neural network developed by Finnish scholar KOHONEN T to simulate the
autonomous learning ability of human brain neurons. It can find similar parts in the huge sample space and map
them to the low-dimensional space, form clusters and remember this logical relationship, and the trained network
can automatically classify the input samples.

SOM has the feature of mapping high-dimensional data to low-dimensional space and keeping the original
data topology unchanged. The network consists of input layer and output layer. Unlike other neural networks,
SOM does not contain hidden layers, its structure is simpler, the algorithm is less complex and effective. The
input layer and the output layer are directly connected with the value vectors, and each neuron in the output layer
is connected with all the input vectors to ensure that the input vectors can be mapped well on the output layer.

The SOM network structure is shown in Figure 2. In Figure 2, the lower layer is the input layer and the upper
layer is the output layer. After the weight connection, the input vectors of the same type can be automatically
clustered in the output layer. In Figure 2, different colors of neurons in the output layer represent different data
categories.

SOM neural network belongs to competitive learning neural network. After the training starts, the input vector
will calculate the Euclide distance between all the neurons in the output layer connected with it, and the distance is
taken as the basis for the victory of the neuron. The neuron in the output layer with the smallest distance from the
input vector is the winning neuron, and it has the right to update the weight with all neurons in the neighborhood
to further reduce the distance between it and the input vector. Different input vectors may correspond to different
winning neurons in the output layer, so neurons at different locations in the output layer may be activated.

The algorithm steps are as follows.
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Fig. 2. One kernel

1. Step 1. The number of neurons in output layer, initial weight vector, learning rate, neighborhood size and
other parameters are set to initialize the network.

2. Step 2. Let the input vector x(t) in the data sample set x be n-dimensional, and t be the number of iterations.
Each iteration randomly extracts x(t) from x.

3. Step 3. Calculate the weight of each neuron in the output layer and the Euclidean distance of the input vector,
and find the winning neuron corresponding to the input vector x(t).

c = argmini||x(t)−mi(t)||. (12)

Where c is the winning neuron. mi(t) is the weight vector.
4. Step 4. The weights of the winning neuron c and other nodes in its neighborhood are updated synchronously.

mi(t+ 1) = mi(t) + hci(t)[x(t)−mi(t)]. (13)

Where hci(t) is a neighborhood function, and different nodes in the neighborhood update their weights dif-
ferently according to their distance.

5. Step 5. Update network parameters.

hci(t) = α(t)exp(−sqdist(c, i)/2σ2(t)). (14)

Where α(t) is the learning rate function. σ(t) is a neighborhood size function. Both are monotonically de-
creasing functions of time t (that is, the number of iterations). The value of α(t) is generally between (0,1).
sqdist(c, i) is the square of the geometric distance between the winning neuron c and the node i in the neigh-
borhood.
With the continuous iteration, the neighborhood function will be updated constantly to make the network
converge gradually.

6. Step 6. Check whether the results meet the established requirements, if not, continue to iterate; If the require-
ments are met, the cycle ends and the training is complete.

4. U-Matrix Visualization

The unified distance matrix [22] (U-Matrix) can display SOM classification results. It takes distance as a metric and
displays results in a two-dimensional network structure. Each grid point in the U-Matrix represents the distance
between that neuron and the surrounding neuron.

According to the nature of clustering, clustering is to use the similarity of data to aggregate and separate
chaotic original data sets, so as to divide certain categories. U-Matrix is the method of distance measurement to
visualize SOM classification results. U-Matrix can store the distance between each neuron in the SOM and its
neighboring neurons, and the size of the value indicates the distance.

In order to represent this distance measurement more vividly, the author introduced RGB colors in UMatrix,
and assigned different data values to different colors. The dark color means the distance is far and the value is
large, the light color means the distance is close and the value is small, and the size of the distance can be judged
according to the depth of the color. Data with high similarity (that is, small distance) belongs to the same class of
data, while data with small similarity (that is, large distance) belongs to different class of data.

The U-Matrix actually only serves to store the relative distance of neurons in the SOM, and does not change
the position of neurons. Therefore, this approach not only visualizes SOM, but also preserves the topology of the
original data.
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5. Experiment and Analysis

In model training, all English-Chinese parallel data sets (represented byM ) are used, and the encoder-decoder pa-
rameter P (y|x; θ) and the reconstructor parameter R(x|s; γ) are trained simultaneously, whose objective function
is expressed as:

J(θ, γ) = argmax(θ,γ0

M∑
m=1

logP (ym|xm; θ) + λ logR(xm|sm; γ). (15)

The objective function consists of two parts, the likelihood function is used to measure the fluency of the
translation, and the reconfigurator is used to measure the adequacy of the translation. λ is the hyperparameter of
balancing likelihood and reconstruction, and λ is chosen as 1 in this paper. BLEU value is used to evaluate the
translation quality of this paper.

The experimental data consisted of 67273 sentences of English-Chinese parallel corpus. Firstly, the English-
Chinese parallel corpus was preprocessed and an English-Chinese alignment dictionary with a size of 30,000 was
generated respectively. Then, the corpus was divided by using the automatic method, and the partitioning results
were shown in Table 1.

Table 1. Dataset

Data Number

Training set 60000
Validation set 4000
Test set 3300
Total 67300

The training of English-Chinese neural machine translation model based on encoder-decoder reconstruction
framework requires pre-training of encoder-decoder framework based on attention mechanism. In this paper, a
neural machine translation model, NMT-Chainer, was used to pre-train 67300 pre-processed English-Chinese
parallel corpus through this framework. The BLEU value of the model obtained in the first 30 rounds of testing
was shown in Table 2.

Table 2. BLEU value of the pre-trained model

epoch value

3 2.73
6 6.69
9 10.48
12 14.21
15 16.72
18 18.89
21 20.26
24 21.17
27 22.64
30 23.18

An attention-mechanism-based neural machine translation model (Baseline-NMT) is used as a Baseline system
to train an encoder-decoder Reconstructor without pre-training. In addition, the model with the highest BLEU
value is selected from the attention-mechanism-based neural machine translation model as the initial model to
train the encoder-decoder reconstructor (Jointly). The BLEU values of the three models were tracked respectively,
and the comparison results of the BLEU values of the three models were obtained, as shown in Table 3.

As can be seen from Table 3, if the model is not pre-trained before training the encoder-decoder reconstruction
framework, the model translation effect after adding the reconfigurator will be lower than the baseline; Through
pre-training and then training the encoder-decoder reconstruction framework, the resulting model translation effect
increases by 0.89% BLEU over the baseline. The training time of the model with reconfigurator is obviously
extended.
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Table 3. BLEU value of the comparison experiment

Model BLEU

Baseline-NMT 23.18
+Reconstructor 20.50
+Reconstructor(Jointly) 24.07

The BLEU values of the baseline model, namely the attention-mechanism-based translation model and the
(Reconstructor(Jointly)) model, were tracked, and the changes of the BLEU values of the two models with the
increase of the training cycle were obtained, as shown in Table 4.

Table 4. BLEU values with training epoch

Model 3 6 9 12 15 18

Pre-trained model 2.6 6.6 10 14 17 19
Reconstruction model 2.9 7.1 10 15 18 19

6. Conclusion

The end-to-end neural machine translation model is quite mature, but it has the problem of over-translation and
missing translation. Therefore, this paper proposes an English-Chinese neural machine translation method based
on the encoder-decoder reconstruction framework. In order to alleviate the problem of dimensionality disaster, this
paper first uses Word2vec technology to process the English-Chinese parallel corpus. Then, the end-to-end E-C
neural machine translation model is pre-trained, and finally the English-Chinese neural machine translation model
based on the encoder-decoder reconstruction framework is trained, which effectively alleviates the phenomenon
of over-translation and missing translation in the process of E-C machine translation. However, due to the relative
scarcity of English-Chinese parallel corpora, the quality of the translation model obtained is not particularly ideal.
Therefore, obtaining high-quality English-Chinese parallel corpora with wide coverage has become one of the
focuses of future research to improve the effectiveness of machine translation.
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