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Abstract. This paper proposes a Visual-Inertial Odometry (VIO) algorithm that relies solely on monocular
cameras and Inertial Measurement Units (IMU), capable of real-time self-position estimation for robots during
movement. By integrating the optical flow method, the algorithm tracks both point and line features in im-
ages simultaneously, significantly reducing computational complexity and the matching time for line feature
descriptors. Additionally, this paper advances the triangulation method for line features, using depth informa-
tion from line segment endpoints to determine their Plcker coordinates in three-dimensional space. Tests on
the EuRoC datasets show that the proposed algorithm outperforms PL-VIO in terms of processing speed per
frame, with an approximate 5% to 10% improvement in both relative pose error (RPE) and absolute trajectory
error (ATE). These results demonstrate that the proposed VIO algorithm is an efficient solution suitable for
low-computing platforms requiring real-time localization and navigation.

Keywords: Visual-inertial odometry, Optical flow, Point features, Line features, Bundle adjustment.

1. Introduction

Visual-Inertial Odometry (VIO) technology stands as a pivotal foundation in contemporary robot navigation and
localization, distinguished by its seamless integration of visual data with Inertial Measurement Units (IMU). VIO
systems are broadly categorized into feature-based and direct methods, reflecting their principal technological
trajectories for feature processing. Among the myriad of algorithms, the VIO module within ORB-SLAM3 is
celebrated for its exceptional precision and robustness. However, its demanding hardware requirements impede
its deployment across various application scenarios. Concurrently, VINS-Mono, a venerable VIO implementation,
although commendable in precision, reveals room for enhancement in robustness when subjected to real-world
challenges.

Fig. 1. The left image presents the test results of the KLT-VIO algorithm on the EuRoC datasets, where the red
lines represent line features that have moved out of the sliding window, and the black curve denotes the camera’s
motion trajectory; the right image illustrates the NVIDIA Jetson Xavier

To surmount these challenges, our research introduces an advanced VIO algorithm that bolsters system robust-
ness particularly in environments scarce in features, through the incorporation of line features. In comparison to
the PL-VINS algorithm, which also harnesses point and line features, our proposed approach achieves a notable
acceleration in processing, drawing the technology based on point and line features closer to the realm of real-time
operation. Figure 1. illustrates the performance validation of our algorithm on the EuRoC dataset.

The key contributions of this study are encapsulated in the following facets:

1. The algorithm’s front end has been enhanced with the introduction of optical flow tracking for both point and
line features already extracted. Traditional VIO methodologies predicated on point and line features allocate a
significant portion of processing time to the computation and matching of line features. By employing optical
flow for unified tracking, our study substantially curtails the time dedicated to feature matching.
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2. Capitalizing on the dualistic nature of points and planes in three-dimensional space, we present an innovative
approach to computing the Plcker coordinates for line features. Utilizing the homogeneous coordinates of
line segment endpoints to derive the Plcker coordinate matrix, and thereby the Plcker line itself, our method
mitigates the issue of inaccurate Plcker line calculations due to acute angles between planes.

3. We have implemented and tested our algorithm on the NVIDIA Jetson Xavier platform, demonstrating en-
hanced robustness through the addition of line features. This improvement ensures effective pose estimation
even under conditions of limited feature visibility, significantly curbing the occurrence of pose drift. Figure 1.
showcases some of the experimental apparatus employed in our tests.

2. Related Works

In feature-based VSLAM or VO methods, ORB-SLAM3 [1] utilizes ORB feature points and computes descriptors
for feature matching. Compared to its predecessor ORB-SLAM?2 [2], its innovation lies in the introduction of
Maximum A Posteriori (MAP) estimation during IMU initialization and the multi-submap system, enabling ORB-
SLAMS3 to effectively reuse information from all historical algorithm modules. OKVIS [3] is the first to propose
a visual-inertial tightly-coupled VO system based on keyframes and BA optimization. ORBSLAM-VI [4] was the
first to introduce a map reuse-based visual-inertial SLAM system. VINS-Mono [5] and VINS-Fusion are highly
accurate and robust Visual-Inertial Odometry (VIO) systems that include loop detection and 4-DoF pose graph
optimization, using Shi-Tomasi feature points and KLT optical flow for tracking features between frames.

In direct methods-based VSLAM or VO approaches, LSD-SLAM [6] can establish large-scale semi-dense
maps, but it uses pose graph estimation instead of BA optimization, leading to less than ideal accuracy and robust-
ness. SVO [7] employs FAST feature points and matches them using a direct method, with reprojection error as
the optimization cost function, performing well in terms of accuracy and robustness but lacking loop detection and
relocalization capabilities, meaning it only considers short-term feature correspondences. DSO [8] can calculate
camera poses in situations where feature points are not distinct, enhancing robustness in low-texture environments.
DSM [9] introduced map reuse techniques in direct methods. ROVIO [10] uses Shi-Tomasi feature points and di-
rect method for feature matching, but its pose estimation is based on an Extended Kalman Filter (EKF). VI-DSO
[11] builds upon DSO by incorporating an Inertial Measurement Unit (IMU) and combines photometric errors
with inertial measurements, significantly improving precision and robustness compared to DSO.

In visual-inertial odometry based on point and line features: Choi et al. [12] proposed a geometrically con-
strained Extended Kalman Filter (EKF) framework for a line feature that every line is orthogonal or parallel to
each other. PLF-VINS [13] enhanced the algorithm’s accuracy, robustness, and real-time performance through
the fusion of point and line features, as well as the integration of parallel line features. In PLI-VINS [14], a line
segment extraction algorithm with adaptive threshold value was proposed to improve the quality of extracted line
segment. Liu et al. [15] proposed an IMU-assisted hierarchical grid optical flow tracking method that could more
accurately and quickly track points between frames. Zuo et al. [16] employed the orthonormal representation as
the minimal parameterization to model line features along with point features in visual SLAM and analytically
derived the Jacobians of the re-projection errors with respect to the line parameters, which significantly improved
the SLAM solution. PL-VIO [17] was a tightly-coupled monocular visual-inertial odometry system exploiting
both point and line features. Plcker coordinates and orthonormal representation for the line are employed to obtain
both computation simplicity and representational compactness of a 3D spatial line.

3. Overview

To capture the camera’s motion, this paper presents a real-time monocular Visual-Inertial Odometry named KLT-
VIO that employs both point and line features. The paper uses optical flow to track points and lines, accelerating
the feature matching process by skipping the computation and matching of descriptors. The architectural diagram
of KLT-VIO is shown in Figure 2. The camera’s motion is described by three rotational degrees of freedom
(DoF), represented by quaternions, and three linear displacement DoFs, denoted by a three-dimensional vector.
The algorithm is primarily divided into two modules: the feature perception module and the local visual-inertial
odometry module. The algorithm mainly consists of two modules: the Perception of Features module, primarily
responsible for feature extraction and matching, and the Local Visual-Inertial Odometry module, which focuses
on pose estimation.

3.1. Feature Perception Module

KLT-VIO initially acquires RGB images and two types of datatacceleration and angular velocitytfrom the current
frame using a calibrated monocular pinhole camera and an inertial measurement unit, respectively. The algorithm



KLT-VIO 3

IMU Preprocess

1 (vt oo ) [ o nesnt ) (ot i)

o

e Outlier

1 }—)[ Update Latest State: }—){ Sliding Window ] H

Fig. 2. Algorithm architecture diagram

extracts feature points and lines from each input image and matches features between two consecutive frames
using optical flow. We utilize the Shi-Tomasi algorithm for point feature extraction, LSD or EDLine algorithms
for line feature extraction, and the KLT algorithm for tracking both types of features. Specific details are described
in sections 4.1. Drawing on the work of VINS-Fusion, we provide an initial estimate of motion through IMU
pre-integration, which reduces computational complexity, enhances error tolerance, and aligns the image frame
rate. Before initialization is complete, we calibrate the gyroscope and calculate velocity, gravity, and scale factors
using LDLT decomposition. After preprocessing the input data, the entire system needs to be initialized, where it
is necessary to quickly and accurately estimate the relative pose of the current system using feature points.

3.2. Local Visual-Inertial Odometry Module

KLT-VIO is an optimization-based odometry system. The primary issue is to solve the nonlinear least squares
problem. In this context, we use the matching results from optical flow and calculate the spatial coordinates of
points and lines between two consecutive frames through triangulation; specific details about triangulation are
described in section 4.2. Based on the spatial coordinates of points and lines, we minimize re-projection errors to
obtain a highly accurate camera pose, employing bundle adjustment to optimize the estimated poses.

4. Method

4.1. Using Optical Flow to Track Line Features

The extended optical flow method has enhanced its functionality to include the tracking of line features, which
was initially restricted to point feature tracking. A line feature is essentially a set of points that possess directional
and length information, and tracking them can be essentially reduced to tracking individual points. To apply sparse
optical flow for line feature tracking, it’s crucial to select representative characteristic points along the lines while
preserving their directional and length information. Grounded in this theory, the paper introduces a line feature
quantification method involving sampling and self-verification. As illustrated in Figure 3, the sampling points
at the line feature’s ends show significant pixel gradient changes, making them robust for sparse optical flow
tracking. Conversely, the middle points may shift along the line due to uniform gradient changes, losing their
positional accuracy but retaining directional information.

Based on the analysis, a line feature quantification method using four-point sampling is proposed. Optical flow
tracking deems the endpoints reliable, but the middle points’ accuracy is questionable. Despite this, the middle
points remain confined to the line’s path, preserving directional information while losing length details. Conse-
quently, sparse optical flow tracking of line features necessitates a self-validation step. This validation compares
the direction vectors from Figures 3 (b) and (c) with those from Figures 3 (a) and (d), determining the line feature’s
reliability as illustrated by the formula.

(ay —dy)/(a, —dy)
(by — Cu)/(bv - Cv)

Where C represents confidence, which in the algorithm implementation, needs to be greater than 0.99 to ensure
that the line features tracked using sparse optical flow are trustworthy; a and d represent the two endpoints of the
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Fig. 3. Quantification of line features. The line feature is quantified into four feature points labeled as a, b, ¢, and
d. When using sparse optical flow for tracking, their correspondences are preserved.

line feature; b and c represent the two middle sample points of the line feature; v denotes the x-coordinate of a
point, v denotes the y-coordinate of a point.

An analysis of the PL-VINS [18] algorithm’s feature extraction and matching component revealed that line
feature descriptor computation and matching are time-consuming, exceeding the processing time for point feature
tracking using sparse optical flow. The algorithm’s front-end does not parallelize the extraction and assignment of
point and line features across different CPU cores, resulting in cumulative processing times. The paper’s proposed
point and line feature tracking via sparse optical flow improves this, boosting VIO’s front-end speed by nearly
40%, as validated by the experiments in Figure 4.
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Fig. 4. (a) Time consumption for tracking line features using extended optical flow; (b) Time consumption for
tracking line features using descriptor matching.

4.2. Triangulation of Line Features

In the field of three-dimensional computer vision, line feature triangulation is an important technique used to re-
cover the three-dimensional structure of a scene and camera pose from images. The process involves the following
steps:

1. Plane Construction: First, the LSD [19] algorithm is used to extract line features, and their endpoints in
each view are located. Then, using these endpoints and the camera’s optical center (or optic axis), a plane is
constructed. This plane encompasses the potential position of the line feature in space.

Comparison of extended optical flow and descriptor matching for line feature tracking, using a video with a
total of 3682 frames. Each point in the graph represents the processing speed of each frame. It is evident that
the processing speed using extended optical flow is significantly faster than the latter.

2. Angle Computation: For each line feature, several such planes are computed from different perspectives in
the images. The system seeks the two planes with the largest included angle because a larger angle results in
more accurate positioning and depth of the line feature where the two planes intersect.

3. Line Feature Positioning: Finally, the intersection of the two planes is computed to determine the position and
depth of the line feature in three-dimensional space. This intersection line represents the optimal estimate of
the line feature in three-dimensional space.The formula is shown below.
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Where M represents the Pliicker matrix, P, and P represent the two intersecting planes, and L represents
the Plicker line.

When the camera’s motion direction aligns with the direction vector of the line feature, there may be issues
with a small angle between two planes, leading to errors. In such cases, the angle between the two planes can
be very small, and if it falls below a set threshold, it can result in triangulation failure since the intersecting line
cannot be accurately computed.

In the optimized method, we no longer rely on the intersection of two planes to determine the position of
the line feature. Instead, based on the duality principle of points and planes in projective space, the formula for
computing the Plicker line using the intersection of two planes can be transformed into using the endpoints to
compute the Pliicker line. Therefore, the depth information of the two endpoints of the line feature can be directly
used to calculate its position in three-dimensional space. The advantage of this method is that as long as the
depth of the two endpoints of the line feature can be accurately calculated, the position of the line feature in
three-dimensional space can be precisely determined, regardless of the camera’s motion direction.

The steps of the optimized line feature triangulation are as follows.

1. Compute endpoint depths: By identifying the line features in the image and finding the two endpoints of these
line features in each view. Then, perform triangulation on each endpoint to determine its depth.

2. Determine the line feature’s position: The Plicker coordinates of the line feature are calculated using the
depths of the two endpoints. The formula is shown below.
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Where M represents the Pliicker matrix, P; and P, represent the two intersecting planes, and L represents
the Plicker line.
The two aforementioned methods for finding the Pliicker line are shown in Figure 5.

Fig. 5. The left image uses the intersection of two planes a and b to find the Plicker line, while the right image
uses the homogeneous coordinates of two points a and b to determine the Plicker line.

S. Experiments and Analysis

The algorithm in this paper is developed based on Robot Operating System(ROS), and all experiments use
OpenCV version 4.7.0 and the Ceres-solver library version 1.14.0. During the experiments, the threshold for
the number of line features was set to 50, with a line feature mask width of 10 pixels, and the threshold for the
number of point features was set to 150, with a point feature mask width of 30 pixels.
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5.1. Dataset

In this paper, we utilized the EuRoC dataset, which is a stereo visual-inertial (VI) dataset specifically designed for
indoor micro aerial vehicles (MAVs). The significance of this dataset lies in providing a standardized environment
for evaluating and comparing different SLAM (Simultaneous Localization and Mapping) algorithms.

The EuRoC [20] dataset comprises two distinct scenarios: Machine Hall and Vicon Room. These scenes are
provided by ETH Zurich, with the aim of advancing research and development in SLAM technology [21,22]. They
are representative as they simulate indoor environments that MAVs might encounter in practical applications.

Experiments show that LK-VIO outperforms VINS-Fusion in terms of robustness and accuracy, and signifi-

cantly surpasses PL-VINS in processing speed.
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Fig. 6. Absolute pose error of KLT-VIO on MH_01 _easy dataset
: —
Fig. 7. Absolute pose error of VINS-Fusion on MH_01 _easy dataset
Table 1. Performance of KLT-VIO and VINS-Fusion on the MH_01 _easy dataset
Method max mean median min rmse sse std

VINS-Fusion 0.697274 0.369813 0.393521
KLT-VIO 0.211310 0.09051

0.031016 0.422290 648.760747 0.203881
0.086498 0.015847 0.098496 35.293920

0.038843

The remaining test data is shown in the table below.

6. Conclusion

This paper primarily introduces a novel Visual-Inertial Odometry (VIO) algorithm based on monocular cameras
and IMU called KLT-VIO. Compared to traditional VIO methods, the approach proposed in this paper employs an
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Fig. 9. Absolute pose error of VINS-Fusion on MH_02_easy dataset

Table 2. Performance of KLT-VIO and VINS-Fusion on the MH_02_easy dataset

Method max mean median min rmse sse std

VINS-Fusion 0.780244 0.276083 0.275313 0.026406 0.318478 304.284477 0.158766

KLT-VIO 0.226376 0.110654 0.126630 0.024108 0.120596 43.630311  0.047950

Table 3. Performance of KLT-VIO and VINS-Fusion on the MH_02_easy dataset

Method Dataset max mean median min rmse sse std
VINS-Fusion MH_03_medium 0.340473 0.182992 0.185718 0.015425 0.205624 110.691878 0.093781
LK-VIO MH_03_medium 0.391490 0.223175 0.224726 0.071118 0.233272 142.460204 0.067888
VINS-Fusion MH_04_difficult 0.600204 0.282647 0.24787  0.111838 0.301392 178.858738 0.104632
LK-VIO MH_04 difficult 0.492885 0.268471 0.290959 0.044961 0.284548 158.534044 0.094290
VINS-Fusion V1.01_easy 0.248323 0.136686 0.121735 0.019170 0.150714 63.21487 0.063495
LK-VIO V1.01_easy 0.294921 0.101206 0.088756 0.030284 0.110968 34.269742  0.045511
VINS-Fusion V1_.02_medium 0.366023 0.151447 0.147489 0.050353 0.165002 43.234163  0.065494
LK-VIO V1.02_medium 0.341891 0.166910 0.146781 0.072832 0.180930 51.983963  0.069831
VINS-Fusion V1_03_difficult  0.308435 0.157611 0.168716 0.033760 0.172894 59.336542  0.071073
LK-VIO V1_03_difficult  0.557396 0.183605 0.165870 0.011634 0.011634 86.170362  0.099820
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enhanced feature tracking technique that not only tracks point features but also line features in images by integrat-
ing optical flow, effectively reducing the computational complexity of the entire VIO system. It also significantly
decreases the matching time for line feature descriptors, enhancing the overall efficiency of the algorithm.

Furthermore, to improve the three-dimensional reconstruction accuracy of line features, this paper also propos-
es an improved triangulation method for line features. Traditional methods often overlook the depth information
of line segment endpoints, whereas our algorithm utilizes this information to determine the Plcker coordinates of
line segments in three-dimensional space, thus providing an alternative representation of line features. This en-
hancement is effective for handling dynamic scenes and long straight line structures and can significantly increase
the dimensionality of the matrix.

To validate the performance of the proposed algorithm, we conducted a series of experimental tests on the
publicly available EuRoC dataset. The test results show that our algorithm significantly outperforms the currently
popular PL-VIO algorithm in terms of processing speed per frame, with an improvement of about 5% to 10% in
relative pose error and absolute trajectory error. These performance improvements demonstrate the enhancements
in real-time performance and accuracy of our VIO algorithm.
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