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Abstract. In the link prediction task of knowledge graph completion, Graph Neural Network (GNN)-based
knowledge graph completion models have been shown by previous studies to produce large improvements in
prediction results. However, many of the previous efforts were limited to aggregating the information given
by neighboring nodes and did not take advantage of the information provided by the edges represented by
relations. To address the problem, Coupling Relation Strength with Graph Convolutional Networks (RS-GCN)
is proposed, which is a model with an encoder-decoder framework to realize the embedding of entities and
relations in the vector space. On the encoder side, RS-GCN captures graph structure and neighborhood infor-
mation while aggregating the information given by neighboring nodes. On the decoder side, RotatE is utilized
to model and infer various relational patterns. The models are evaluated on standard FB15k, WN18, FB15k-
237 and WN18RR datasets, and the experiments show that RS-GCN achieves better results than the current
state-of-the-art classical models on the above knowledge graph datasets.
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1. Introduction

Knowledge Graphs (KGs) [1] such as DBpedia [2] and Freebase [3] consist of nodes (entities) and edges (relations
between entities). In semantic Web contexts, statements in a knowledge graph can be represented as a triple
(h, r, t), where h represents he head entity, t represents the tail entity, and r represents the relation between the
head entity and the tail entity. Knowledge graphs have attracted increasing attention in several domains, such as
question and answer [4,5], recommender systems [6] and search engines. However, knowledge graphs remain
incomplete as the real world continues to change, which motivates Knowledge Graph Completion (KGC) tasks to
predict missing facts and improve the quality of knowledge graphs. Link prediction has become a major focus of
Statistical Relational Learning (SRL) in these inference tasks.

While translation-based models are intuitive and easy to understand by capturing the semantics of relations
through simple translation vector representations, they cannot capture complex relations and perform poorly in
complex knowledge graphs. In contrast, the model based on coded semantic matching is relatively flexible in
modeling interactions between entities and relations, but it is less interpretable. In addition, CNN-based models
are able to effectively capture the local patterns of entities and relations through convolutional layers, but some
global information is lost. Graph neural networks have been shown to be very effective in link prediction tasks in
recent experiments. However, most of the previous efforts were limited to aggregating the information given by
neighboring nodes and did not take advantage of the information provided by the edges represented by relations.
Specifically, most existing GNN-based models do not take advantage of the strengths available in different rela-
tions or the same relations between different entities. As in Fig.1, the entity Robert Downey Jr. has two different
relations ”Acted in” and ”Collaborated with”, and the different relations have different relation strengths, as noted
in previous results such as R-GCN. However, in a relation such as ”Acted in”, where the entity Robert Downey
Jr. acted in Iron Man as the sole star, in The Avengers as the star, and in Spider-Man: Homecoming as a special
appearance, it is clear that the relation has different strengths of relationship between the different entities;Under
the relation ”Collaborated with”, the entity Robert Downey Jr. has a collaborative relationship with the director
Joss Whedon, as well as having that collaborative relationship with the actor Chris Evans, which again suggests
that the strength of the relationship varies between different entities facing the same relation.

This paper proposes a new graph neural network named RS-GCN to solve the above problem. The key idea
is to give different strengths to the relations between different entities. Specifically, this paper defines the strength
parameter between different relations and same relations in a neural network when dealing with different entities,
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Fig. 1. Example of a partial knowledge graph for film actor Robert Downey Jr

in order to obtain from this parameter the information about the relations that are present in neighboring nodes
and edges. The contributions of this paper are summarized below:

This paper proposes a framework with RS-GCN as the encoder and RotatE as the decoder. The encoder side of
the framework is based on GCN, and in contrast to traditional GCN-based models, RS-GCN utilizes graph struc-
ture and aggregates the strength information of neighboring entities and relations between entities and incorporates
it into knowledge graph complements;

In the link prediction task, RS-GCN has excellent performance on multiple datasets, and it also outperforms
its baseline, verifying the validity and feasibility of RS-GCN. For example, on the FB15k-237 dataset, there is a
5.6% improvement in MRR over its baseline RotatE, and 6.2%, 2.4%, and 3.7% on Hits@1, Hits@3, and Hits@10,
respectively.

2. Related Works

In the knowledge graph completion task. TransE [7] is a simple and effective learning model for knowledge graph
representation, but it has some limitations in dealing with symmetry, many-to-many relations, and sparsity. In
order to solve the problem, TransE-based extensions such as TransH [15],TransR [8] and STransE [16] have been
proposed.These extensions take into account the type information of the relations in order to realize the mapping
of the head-tail entities in the relational space through the introduction of hyperplanes, relation-specific mapping
matrices, and bilinear transformations, and so on. In addition, RotatE [17] is able to better capture relations be-
tween entities, especially symmetric relations, by introducing complex vectors and rotation operations, In real
application scenarios, the translation model cannot adapt to the knowledge graph application environment, where
the data is huge, complex and constantly changing.Some researchers factor in the dynamics,.Semantic matching
models such as DistMult [11], ComplEx [12], SimplE [18], and QuatE [19] are usually based on similarity metrics
to evaluate the semantic similarity between entities or relations. In addition, neural network based models such as
ConvE [9], ConvKB [10] and CapsE [20] have been used to learn the embedding of entities and relations within
triples, however, the neural network models consider each triple as a whole and do not take into account the re-
lations between the triples. However, these embedding models do not consider entity-to-entity message passing
and semantic information. Especially when applied to those knowledge graphs where the entities themselves have
fewer attribute descriptions but richer global information, the expressive power of these models is significantly
limited.

Some researches aim at modeling the information of knowledge structure by considering the knowledge graph
as a special kind of graph structure. The GNN-based model follows the principle of neural message passing,
which achieves the learning of the global representation of the whole graph by iteratively aggregating the local
information of the nodes, and then efficiently captures the structural and topological features of the graph. The
TransGCN [21] model combines the translation model with GCN, synthesizes the mapping of entities and relations
by TransE model and the extraction of features by graph neural network, and achieves a significant improvement
in the results of the link prediction task. Neighborhood information is also effectively used for modeling in models
such as RGCN [13] and SACN [14], where the encoder model accumulates evidence in multiple inference steps
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in the graph, taking into account the effect of differences in relations in the knowledge graph on entity embedding.
However, most of the above approaches construct knowledge models based on the structural information of the
knowledge graph and the semantic information of the entities, or consider only several types of relations and lack
of semantic information utilization of the same relations between different entities. On this basis, this paper’s
approach further considers and exploits the potential semantic information of neighbor relations to improve the
expressive power and complementary accuracy of the model.

3. Method

In this section, we specifically describe our proposed RS-GCN. the general framework of the model is given in Fig.
2, which contains both encoder and decoder ends: (1) The encoder side, built on GCN, is used to better aggregate
the information carried by nodes and edges. While the graph convolutional network aggregates the features of
neighboring nodes, RS-GCN further enhances the representation of the central entity by constructing a weight
matrix between different entities under each relation. An example of the weight matrix Θ is shown in Fig. 3. (2)
On the decoder side, RotatE is integrated into the model as a decoder. The RotatE model is a more advanced model
that can effectively model three relational patterns and predict missing entities and relations.

Fig. 2. Overall framework flowchart

3.1. Encoder

The encoder module is an extension of the classical GCN as it weighs different types of relations in different ways
during aggregation and learns the weights adaptively during network training. Introducing the following notation:
a directed and labeled multigraph is denoted as G = (V,E,R), where nodes (entities) vi ∈ V and labeled edges
(relations) (vi, r, vj) ∈ E, where r ∈ R is a relation type. The related methods can be concretely represented as:

h
(l+1)
i = σ(

∑
j∈Ni

g(h
(l)
i , h

(l)
j )). (1)

Where h(l)i ∈ Rd
(l)

is the hidden state of the node vi in the l − th layer of the neural network and d(l) is the
dimension of the layer representation. The form g(·) is usually chosen as a function of a (message-specific) neural
network that continuously accumulates incoming information, which is passed through an elemental activation
function σ(·), such as the ReLU function. Ni denotes the set of direct neighbors of node vi. Aggregation of
neighboring nodes of node vi is denoted. R-GCN is inspired to redefine the forward pass update of entities or
nodes by considering the different relations represented by edges in the graph structure:
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Where Nr
i denotes the set of direct neighbors of node vi under relation r ∈ R, and ci,r is a problem-specific

normalization constant that can be learned or chosen in advance (e.g., ci,r = |Nr
i |).

Referring to the formula above, R-GCN utilizes information from neighboring distinct relations to enhance the
representation of the central entity. Indeed, even if the relations are the same, the same relation between different
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entities is not equally important in indicating the central entity. For example, in Fig.1 presented earlier, when
the same relation r is ”Acted in”, it is clear that special appearances, sole lead actor and multiple lead actors have
different relevance and indications between different entities. Similarly, when the relation r is ”Collaborated with”,
collaboration with the director and collaboration with the actors naturally have different relevance and indications.

Therefore, this paper constructs a weight matrix between different entities under each relation Θ further en-
hancement of semantic feature interaction during entity encoding. Relations between different entities possess
different weights which are distinguished by the learnable parameter θm, 1 ≤ m ≤M and M denotes the number
of edges in the graph structure. Thus, the formula can be expressed as follows:

h
(l+1)
i = σ(

∑
j∈Ni

θ(l)m h
(l)
j W

(l) +W
(l)
0 h

(l)
i ). (3)

θm represents the strength of the relationship in which the relation between this entity and another entity has,
and also, considering the importance of normalization under the same relation, the weight matrix Θ as shown in
Fig. 3,we specifies that in the matrix represented by the same relation, the sum of the values of θm in each row is
1 for normalization.

Fig. 3. Example of a weighting matrix (corresponding to the knowledge graph in Fig.2)

Overall, Eq. (3) conveys the feature information of neighboring nodes by assigning different relation strengths
to the relations and by normalizing the sum. The choice of (Whj) node-to-node linear transformation a can give
the model a computational advantage. Meanwhile, noting that the weight matrix Θ with intensity information in
the matrix corresponding to each relation θm is irregularly dispersed and has a large number of elements that are
zero, In order to improve computational efficiency, a sparse matrix representation of the data is used as a solution
to efficiently store non-zero elements, capturing the inherent sparsity in the dataset. In addition, the model sets up
a single self-connection at each node in the data to convey its own features so that the features of the nodes in the
previous layer can be efficiently captured by the nodes in the next layer.

3.2. Decoder

Embedding-based models are often used as the basic model of a decoder, which enables the model to learn a
corresponding embedding vector that maps entities into a low-dimensional space. This allows for closer represen-
tation of similar entities in the embedding space, better capturing of semantic associations in the knowledge graph,
and effective prediction in the face of unseen entities and relations. The decoder takes as input the embedding of
entities and relations from the encoder. We use RotatE as the decoder, which uses complex vectors to represent
entities and relations, and introduces a rotation operation to capture the relations between entities, and is able to
model three of the more common relational patterns, formulated as follows.

For any entities a, b, the relation r is symmetric (antisymmetric):

r(a, b)→ r(b, a), r(a, b)→ ¬r(b, a). (4)
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For any entities a, b, the relation r1 is inverse to the relation r2.

r2(a, b)→ r1(b, a). (5)

For any entity a, b, c, a relation r1 is a combination of relation r2 and relation r3.

r2(a, b) ∧ r3(b, c)→ r1(a, c). (6)

Given (vi, rk, vj) ternary, the ternary scores in RotatE:

ψrk(vi, vj) = −||vi � rk − vj ||. (7)

� is the product of elements in complex space.
To be consistent with the baseline RotatE, the model uses self-adversarial negative sampling to train the model.

The main feature of self-adversarial negative sampling is that negative triples are assigned different probabilities,
apparently wrong negative triples are assigned lower probabilities and high quality negative triples are assigned
higher probabilities. Thus, the probability distribution p is used to draw negative samples according to the current
embedding model, for the triad (h, r, t).

p(h′j , r, t
′
j |(hi, ri, ti)) =

eαψr (h′j , t
′
j)∑

i e
αψr (h′i, t

′
i)
. (8)

Where α is the sampled temperature,the scores of negative examples are amplified by the exponential function
exp, which enhances the difference between positive and negative examples, making it easier for the model to
distinguish between positive and negative examples during training. The above probabilities for negative samples
are then considered as the weights of the samples to help construct the loss function. The loss function can be
written as follows:

L = − log(σ(γ + ψr(h, t)))−
n∑
i=1

p(h′i, r, t
′
i) log(σ(−ψr(h′i, t′i)− γ)). (9)

σ is a sigmoid function, and all embeddings are in the complex vector space.

4. Experiments and Analysis

4.1. Dataset

In previous studies, the performance of link prediction methods is usually evaluated on four datasets, namely
FB15k [3], FB15k-237 [22], WN18 [23] and WN18RR [22]. Tab.1 shows the basic statistics of these four datasets.
FB15k is a dataset extracted from the original FreeBase Knowledge Graph for the knowledge graph representation
learning task, and WN18 is a dataset extracted from the original WordNet English vocabulary database for the
knowledge graph representation learning task.According to the literature [9], the presence of inverse triples in
both the training and test data leads to an effect on the prediction by memorizing these affected triples on the
predictive ability to have an impact. To address this issue, FB15k-237 and WN18RR are proposed as variants of
the above two datasets, where all inverse ternary pairs are removed. These two datasets have been shown to be
more challenging for models performing link prediction.

Table 1. Statistical information on data sets

Dataset |E| |R| #Triples(Train) #Triples(Valid) #Triples(Test)

FB15k 14951 1345 483142 50000 59071
FB15k-237 14541 237 272115 17535 20466
WN18 40943 18 141442 5000 5000
WN18RR 40943 11 86835 3034 3134

4.2. Evaluation Protocol

In the testing phase, for each ternary, this paper replaces the head entity with all other entities in the current KG
and computes the scores of these replaced ternaries and the original ternary using the scoring function specified
in Section 3. Following previous studies, using the most commonly used metrics Mean Reverse Rank (MRR) and
Hits@n (n = 1, 3, 10). For all metrics, higher values imply better performance [26-29].
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4.3. Training Settings

Models uses PyTorch [24] as a deep learning framework, and all experimental operations were performed on an
A40 graphics card, using Adam as a gradient optimizer. The best parameters are selected when the filtered MRR
achieves the best performance on each validation set. Some of the parameters are chosen as follows:the number
of samples per training batch size is 1024, the learning rate lr is 0.0001, and the number of samples per test
test batch size is 16.

4.4. Experimental Results and Analysis

The experimental results of the RS-GCN model and other comparative models on the link prediction task are
shown in Tab.2 and Tab.3, in which some of the experimental results of the advanced models are referred to other
literatures [25], and the individual experimental results are reproduced due to the unknown source. The model sets
the max step of RS-GCN to 100000 under the same environment settings and repeats the experiment three times
under the optimal parameters, and takes the average value of each evaluation index as the experimental results.
Tables highlights the best performance after comparison in bold.

On the FB15k-237 and WN18RR datasets, RS-GCN outperforms existing classical models on all metric-
s, showing competitive results. These two datasets mainly contain various inference modes such as symmet-
ric/antisymmetric and combinatorial. Among these modes, TransE has some limitations in dealing with symmetry,
many-to-many relations, and sparsity, while RotatE improves inference by transforming relations into rotations in
complex space, which gives better performance of the RotatE model compared to other methods in Euclidean
KGEs. In contrast, RS-GCN adopts the encoder-decoder framework, considers the internal strength of the same
relation and different relations among different entities, and combines the advantages of the RotatE model, which
exhibits high performance after satisfying the normalization constraints, demonstrating its high representational
capability.

In contrast, the performance of RS-GCN on the WN18 dataset is not very different from that of the advanced
classical models (e.g., ConvE, NagE, and TuckER, etc.), and it can be found that the WN18 dataset does not pro-
vide a significant performance differentiation between these models within the error tolerance. In the FB15k and
WN18 datasets, since the datasets mainly contain multiple inference modes such as symmetric/antisymmetric and
inverse, the performance of the TransE model is relatively poor because TransE cannot handle symmetric modes.
However, RS-GCN is able to handle these patterns better and achieves similar performance without excessive
parameters compared to models such as TuckER.

Overall, RS-GCN shows competitive performance in handling symmetric/antisymmetric and combinatorial
inference patterns and achieves satisfactory results on different datasets.

5. Conclusion

This paper proposes an encoder-decoder framework (RS-GCN) to simultaneously utilize the information provided
by edges in a graph structure. When dealing with identical relations between different entities, proposing a new
approach to distinguish different strengths of identical relations by introducing relationship weights (stored as
matrices). The model likewise considers normalizing constraints within the same relation to distinguish between
different relations. The experimental results for the four datasets FB15k, WN18, FB15k-237 and WN18RR show
that our RS-GCN model consistently outperforms the baseline R-GCN and RotatE models in all metrics, which
proves the validity of considering the strength of the relationship. In addition, although neighbor information
is encoded and learned in the RS-GCN framework, there is still a lot of auxiliary information such as textual
information and attribute information that is overlooked. In the future, we plans to explore ways to utilize other
auxiliary information so that the easily ignored auxiliary information of knowledge graphs can also play a role in
relational embedding learning.
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