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Abstract. Context: Bioinspired Artificial Intelligence (Bio-Al) has emerged as a transformative tool in biomed-
ical research, addressing challenges in cell labeling essential for understanding cellular behavior and interac-
tions. Traditional cell labeling methods often struggle with accuracy, scalability, and adaptability in complex
datasets. Objective: This paper theoretically explores the integration of Bio-Al models into cell labeling pro-
cess. It aims to assess how these models C encompassing neural networks, swarm intelligence, evolutionary
algorithms, and self-organizing maps C can enhance cell identification and classification. Method: The paper
examines various Bio-Al models that mimic biological processes such as neural functioning, swarm behavior,
and evolutionary dynamics. It also evaluates the application of multimodal Al systems that combine imag-
ing data with molecular and genetic information. In addition, the potential of dynamic cell labeling, inspired
by neural plasticity, is discussed. Result: The integration of Bio-Al models has demonstrated significant im-
provements in accuracy, adaptability, and scalability for cell labeling. Automated labeling systems minimize
human error and enhance reproducibility. Recent advancements in multimodal Al systems have shown promise
in combining imaging with genetic and molecular data, providing more comprehensive insights into cellular
behavior. Dynamic labeling models inspired by neural plasticity offer enhanced tracking of cellular transitions
over time. Conclusion: Bio-Al holds transformative potential in biomedical research via enabling real-time,
dynamic labeling, essential for tracking cellular changes over time in processes like cancer progression, stem
cell differentiation, and immune response. The continued evolution of these Al-driven approaches is expected
to accelerate breakthroughs in understanding diseases, tissue engineering, and regenerative medicine.
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1. Introduction

Cell labeling is a critical technique in modern biomedical research, enabling scientists to track cellular behavior,
monitor interactions, and understand cellular dynamics in healthy and diseased tissues. Traditional approaches
to cell labeling, such as fluorescent tagging or manual annotation, are labor-intensive, error-prone, and difficult
to scale. These methods often rely on subjective human interpretation, which can introduce variability in results,
especially in large datasets or complex biological samples [1]. To address these limitations, artificial intelligence
has been increasingly employed to automate and enhance the process [2, 3]. In particular, Bio-Al, which draws
inspiration from biological systems, offers novel strategies for improving the precision, high-accuracy and high
cell labeling effectiveness [4]. These Al-driven approaches can reduce human bias, increase reproducibility, and
scale seamlessly to large datasets. In addition, bioinspired algorithms allow for adaptive and dynamic labeling,
ensuring that models evolve alongside new data inputs [5]. By leveraging techniques like machine learning and
neural networks, Bio-Al has the potential to revolutionize cell labeling, providing more accurate and scalable
solutions for advanced biomedical research.

Bio-AlI mimics the mechanisms found in nature to solve complex problems. In the context of cell labeling,
these algorithms take inspiration from the brains neural networks, the collective behavior of animals, and the
processes of evolution and self-organization. By leveraging these biological principles, Bio-Al can address the
inherent challenges of cell labeling, such as dealing with high-dimensional data, cellular heterogeneity, and dy-
namic biological environments. This paper examines the application of Bio-Al for cell labeling, focusing on the
latest advancements, benefits, and challenges. Key approaches and models C neural networks, swarm intelligence,
evolutionary algorithms, and self-organizing maps C are applied to enhance automated cell labeling accuracy and
efficiency. These models not only improve cell tracking and classification but also offer dynamic and adaptable
labeling solutions, essential for understanding evolving cellular processes. In addition, this paper explores the inte-
gration of multimodal data, combining molecular, genetic, and imaging information, to provide a comprehensive,
context-aware approach to labeling.
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2. Bioinspired AI Models for Cell Labeling

2.1. Neural Networks Inspired by the Brain

Neural networks, particularly convolutional neural networks (CNNs) and recurrent neural networks (RNNs), are
core components of Al systems inspired by the brains architecture and function. These models excel in pattern
recognition, making them ideal for processing cellular data [6]. Recent advances in deep learning have led to the
development of highly accurate cell labeling systems capable of identifying cells in complex tissues and across
multiple imaging modalities [7,8]. For instance, CNNs can be trained to identify subtle differences in cell morphol-
ogy or fluorescence signals, automating the detection of various cell types in large datasets. W. Yu used CNNs to
classify different types of immune cells in tumor microenvironments, significantly improving detection accuracy
compared to traditional techniques [9]. RNNs, on the other hand, have shown potential in time-lapse microscopy
studies, tracking cell dynamics and labeling cell states over time. P. Madrigal employed RNNs to predict cell divi-
sion patterns, enabling dynamic labeling in stem cell differentiation experiments [10]. These advancements have
made neural network-based models indispensable for large-scale single-cell analysis, where high-throughput and
precision are required to capture the complexity of cellular behavior in biomedical research.

Recent research has demonstrated the utility of CNNs in segmenting cells from microscopy images with high-
er precision compared to traditional image processing techniques [11,12]. CNNs excel in recognizing complex
patterns in cellular images, allowing for automated segmentation even in heterogeneous or noisy environments.
J.C. Koo used deep CNNs to segment cancerous cells in histopathology images, achieving a higher accuracy
rate compared to manual annotations, which are often labor-intensive and subjective [13]. Besides, generative
adversarial networks (GANs), a subset of neural networks, have been employed to enhance image resolution,
improving the accuracy of downstream cell labeling tasks. E.g., in a study Y. Li used GANSs to improve the resolu-
tion of fluorescence microscopy images, enabling better identification of subcellular structures [14]. This method
allowed researchers to label smaller and more detailed cellular components that were previously challenging to
resolve. Such advancements in GANs are particularly valuable in single-cell analysis and tissue imaging, where
image quality directly impacts the accuracy of cell identification and classification. GAN-based super-resolution
techniques have also shown promise in enhancing live-cell imaging, enabling real-time tracking and labeling of
dynamic cell processes at a higher spatial resolution [15].

2.2. Swarm Intelligence for Cell Tracking and Labeling

Swarm intelligence, inspired by the collective behavior of animals such as ants, bees, and birds, has been applied
to the problem of cell tracking, labeling and imaging. Algorithms like Particle Swarm Optimization (PSO) and
Ant Colony Optimization (ACO) mimic the decentralized, adaptive behavior of these organisms, making them
well-suited for tracking cells in dynamic environments, such as time-lapse microscopy studies [16, 17]. These
swarm-based approaches leverage the principles of collective intelligence and self-organization, allowing for more
robust and flexible cell tracking solutions that adapt to the inherent variability and movement within biological
systems. By drawing on natures solutions to complex coordination problems, these algorithms offer innovative
strategies for real-time cell monitoring and labeling.

A notable example of swarm-based Al for cell labeling is the use of PSO to identify and label cells in tissue
samples, where traditional tracking methods often fail due to the complex and variable movement patterns of cells.
PSO algorithms adapt to changing environments and noise in the data, offering a robust method for real-time
tracking and labeling. K. Lan applied PSO to enhance cell segmentation and tracking in time-lapse, achieving
higher accuracy and reduced errors compared to conventional methods [18]. This example highlight how PSO
can effectively manage the inherent variability in cell behavior and environmental noise, leading to more precise
and scalable cell labeling solutions in complex biological settings. By leveraging the adaptability and collective
intelligence of swarm-based algorithms, researchers can improve the quality and reliability of cell tracking in
various biomedical applications.

2.3. Evolutionary Algorithms for Optimization

Inspired by the process of natural selection, evolutionary algorithms (EAs) offer a powerful method for optimiz-
ing Al models used in cell labeling. In EAs, solutions evolve over time, with the most effective parameters being
selected for the next generation, mimicking the evolutionary process of survival of the fittest. Genetic Algorithms
(GAs), one of the most widely used EAs, have been applied to optimize feature selection and classification thresh-
olds in cell labeling tasks. E.g., X. Jiang employed GAs to optimize the parameters of a deep learning model for
identifying cancerous cells in histopathology images, leading to significant improvements in classification accu-
racy [19]. In the same way, N. Erfanian utilized GAs to refine feature extraction methods for single-cell RNA
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sequencing data, enhancing the models ability to distinguish between different cell types [20], and, T. I. Mohamed
used GAs to optimize a deep learning model for lung cancer detection in CT scans, achieving higher sensitivity and
specificity [21]. These algorithms allow researchers to automatically fine-tune Al models, reducing human bias
and enhancing the performance of cell identification systems. By evolving solutions through iterative refinement,
EAs can address complex challenges in cell labeling, leading to more accurate and efficient models that adapt to
varying biological data and conditions. These advancements highlight the effectiveness of EAs in enhancing Al
systems for medical imaging, offering more precise and automated solutions for cancer diagnosis and potentially
improving patient outcomes through timely and accurate detection.

2.4. Biologically Inspired Self-Organizing Maps (SOMs)

Self-Organizing Maps (SOMs), a type of unsupervised learning model, are inspired by the self-organizing be-
havior of biological systems [22]. SOMs are particularly effective for organizing and clustering high-dimensional
data, making them valuable for identifying different cell types based on multi-dimensional datasets like gene ex-
pression profiles or protein activity. SOMs have been successfully used in clustering single-cell RNA sequencing
data, facilitating the identification of new cell subtypes in complex tissues. Such as, T. Mori employed SOMs to
analyze single-cell sequencing data, uncovering previously unrecognized immune cell subtypes with distinct gene
expression patterns and spatial-temporal architectures of cells [23]. By visualizing the relationships between cells
in a low-dimensional space, SOMs provide a powerful tool for organizing and labeling cells without the need for
predefined categories, enhancing our ability to explore cellular heterogeneity and understand complex biological
systems. This approach not only aids in the discovery of new cell types but also improves our understanding of
cellular functions and disease mechanisms.

3. Multimodal AI for Advanced Cell Labeling

While Bio-AI approaches have shown great promise in cell labeling, the integration of multimodal data C such
as combining imaging with genetic, molecular, and proteomic information C can further enhance their perfor-
mance. Multimodal Al systems, inspired by the way biological systems process multiple types of information,
can incorporate diverse data streams to provide a more comprehensive view of cell characteristics. Such as, in-
tegrating imaging data with transcriptomic profiles allows for the simultaneous classification of cells based on
both morphological and molecular characteristics, leading to more precise and biologically relevant labeling [24-
27]. This integration enables the identification of cell types and states that might not be evident from a single
data source alone. Recent research has demonstrated the value of this approach in cancer studies, where tumor
heterogeneity poses significant classification challenges. R. Arora studied combined spatial transcriptomics with
high-resolution imaging to map out different tumor microenvironments, revealing subpopulations of cancer cells
with distinct molecular signatures that predict survival and targeted therapy response [28,29]. Correspondingly, S.
Yasar integrated proteomic data with imaging for more accurate tumor classification and prognosis prediction [30].
Such multimodal systems are particularly valuable for understanding complex diseases and developing targeted
therapies, offering deeper insights into cellular behavior and disease mechanisms.

Recent advances in multimodal AI have enabled the combination of fluorescence imaging with single-cell
RNA sequencing to label cells in tumor microenvironments, leading to new insights into cancer progression and
therapeutic resistance [31-33]. By integrating these modalities, researchers can simultaneously capture detailed
spatial information and molecular profiles, providing a comprehensive view of the tumors cellular landscape.
These multimodal Al systems allow for more precise characterization of the tumor microenvironment, improv-
ing our understanding of cancer biology and aiding in the development of targeted and personalized therapeutic
strategies. By integrating high-resolution imaging with transcriptomic data, researchers can gain deeper insights
into the complex dynamics of cancer and identify potential biomarkers for more effective treatments.

4. Dynamic Cell Labeling with Neural Plasticity Models

Inspired by neural plasticity-the brain’s ability to adapt and reorganize itself-Al models that can dynamically
adjust their labeling as new data becomes available have recently gained attention. These models are particular-
ly useful in scenarios where cell behavior changes over time, such as in studies of cell differentiation or tissue
regeneration. Neural plasticity models can continuously refine cell labels as cells undergo phenotypic changes,
allowing researchers to track cellular transitions with higher accuracy. E.g., J. Jiang developed a dynamic neural
network model that adjusts cell labels in response to real-time data from live-cell imaging, effectively monitoring
the progression of cells through different stages [34]. Correspondingly, L. Yang utilized a neural plasticity-inspired
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approach to improve labeling in stem cell differentiation by updating labels as cells transitioned through interme-
diate states [35]. This dynamic labeling approach mimics the adaptability seen in biological systems, providing a
more nuanced understanding of cellular processes in dynamic environments. By incorporating feedback loops and
adaptive learning, these models enhance the ability to study and interpret complex cellular behaviors over time,
offering valuable insights into tissue regeneration and developmental biology.

5. Challenges and Future Directions

Despite the promising potential of Bio-Al in cell labeling, several challenges remain. One major obstacle is the
need for large, high-quality datasets to train AI models. Obtaining sufficient labeled data, especially for rare or
difficult-to-categorize cell types, is often laborious and costly. In many cases, the lack of comprehensive datasets
hampers the performance of bioinspired algorithms, leading to issues with generalization and accuracy. Likewise,
the complexity of biological systems, coupled with the heterogeneity of cell populations, presents a significant
challenge for developing universally applicable Al models [36-38]. Cells can vary widely across different tissues,
conditions, or disease states, requiring Al systems to be flexible enough to handle diverse data. Addressing these
issues may involve combining synthetic data generation, transfer learning, and active learning to train models
with fewer annotations while still achieving high accuracy. Furthermore, integrating Al models across various
modalities, such as genomic, proteomic, and imaging data, further complicates model development but is critical
for achieving more holistic cell classification systems in biomedical research.

Looking ahead, advancements in self-supervised learning and transfer learning could help overcome these
challenges by enabling models to learn from smaller, less annotated datasets. Self-supervised learning allows Al
to infer patterns and features without extensive labeled data [39], while transfer learning enables models trained
on one dataset to be adapted to new, similar tasks with minimal retraining [40]. These approaches are crucial for
enhancing Bio-AI’s applicability in cell labeling, where high-quality labeled data may be scarce. Besides, as Al
techniques continue to evolve, integrating Bio-Al models with emerging technologies like quantum computing
and advanced imaging modalities may further enhance their capabilities. Quantum computing, with its ability to
process massive datasets simultaneously, could significantly accelerate model training and optimization. Mean-
while, advanced imaging techniques, such as super-resolution microscopy, can provide more detailed cellular
images, offering richer data for Al systems to analyze. Together, these innovations could revolutionize Al-driven
cell labeling, enabling more accurate, efficient, and scalable solutions for biomedical research.

6. Conclusion

Bio-Al represents a powerful and innovative approach to cell labeling in biomedical research. By mimicking
the mechanisms found in nature, such as neural networks, swarm behavior, and evolutionary processes, these
algorithms offer new avenues for improving the accuracy, efficiency, and adaptability of cell identification and
classification. The adaptability of these Al models allows them to handle complex biological systems and hetero-
geneity in cell populations, overcoming limitations of traditional labeling methods. As Al models become more
sophisticated and capable of integrating multimodal data, such as genetic, molecular, and imaging information C
they are poised to revolutionize the field of cellular biology. This integration will enhance our ability to uncover
intricate details about cellular behavior, leading to breakthroughs in understanding disease mechanisms, tissue re-
generation, and therapeutic development. Additionally, Bio-Al can facilitate real-time, dynamic labeling, essential
for tracking cellular changes over time in processes like cancer progression, stem cell differentiation, and immune
response, paving the way for more personalized, precise treatments and accelerate breakthroughs in understanding
diseases, tissue engineering, and regenerative medicine.
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